Collections¶
Note
Usage on each methods are valid on the premise that the following classes is defined in advance.
# coding: utf-8
from owlmixin import OwlMixin, TOption
from owlmixin.owlcollections import TDict, TList
from owlmixin.owlenum import OwlEnum, OwlObjectEnum
class Animal(OwlObjectEnum): # pragma: no cover
DOG = ("dog", {"cry": "bow-wow"})
CAT = ("cat", {"cry": "mewing"})
def cry(self):
return self.object["cry"]
class Color(OwlEnum): # pragma: no cover
RED = "red"
GREEN = "green"
BLUE = "blue"
class Food(OwlMixin): # pragma: no cover
name: str
names_by_lang: TOption[TDict[str]]
class Human(OwlMixin): # pragma: no cover
id: int
name: str
favorites: TList[Food]
class Machine(OwlMixin): # pragma: no cover
id: int
name: str
class Japanese(OwlMixin): # pragma: no cover
name: str
language: str = "japanese"
TList¶
- class owlmixin.owlcollections.TList(iterable=(), /)[source]¶
- to_iterator() TIterator[T] [source]¶
Usage:
>>> it = TList([1, 2, 3]).to_iterator() >>> it.to_list() [1, 2, 3] >>> it.to_list() []
- get(index: int) TOption[T] [source]¶
- Usage:
>>> TList([1, 2, 3, 4, 5]).get(3) Option --> 4 >>> TList([1, 2, 3, 4, 5]).get(5) Option --> None
- for_each(func: Callable[[T], None]) None [source]¶
Usage:
>>> TList([1, 2, 3]).for_each(lambda x: print(str(x))) 1 2 3
- map(func: Callable[[T], U]) TList[U] [source]¶
- Usage:
>>> TList([1, 2, 3, 4, 5]).map(lambda x: x+1) [2, 3, 4, 5, 6]
- emap(func: Callable[[T, int], U]) TList[U] [source]¶
- Usage:
>>> TList([10, 20, 30, 40, 50]).emap(lambda x, i: (x+1, i)) [(11, 0), (21, 1), (31, 2), (41, 3), (51, 4)]
- flat_map(func: Callable[[T], List[U]]) TList[U] [source]¶
- Usage:
>>> TList([1, 2, 3]).flat_map(lambda x: [x, x+1]) [1, 2, 2, 3, 3, 4]
- filter(func: Callable[[T], bool]) TList[T] [source]¶
- Usage:
>>> TList([1, 2, 3, 4, 5]).filter(lambda x: x > 3) [4, 5]
- reject(func: Callable[[T], bool]) TList[T] [source]¶
- Usage:
>>> TList([1, 2, 3, 4, 5]).reject(lambda x: x > 3) [1, 2, 3]
- head() TOption[T] [source]¶
- Usage:
>>> TList([1, 2, 3, 4, 5]).head() Option --> 1 >>> TList([]).head() Option --> None
- take_while(func: Callable[[T], bool]) TList[T] [source]¶
- Usage:
>>> TList([1, 2, 30, 4, 50]).take_while(lambda x: x < 10) [1, 2]
- uniq_by(func: Callable[[T], Any]) TList[T] [source]¶
- Usage:
>>> TList([1, 2, 3, -2, -1]).uniq_by(lambda x: x**2) [1, 2, 3]
- partition(func: Callable[[T], bool]) Tuple[TList[T], TList[T]] [source]¶
- Usage:
>>> TList([1, 2, 3, 4, 5]).partition(lambda x: x > 3) ([1, 2, 3], [4, 5])
- group_by(to_key: Callable[[T], str]) TDict[TList[T]] [source]¶
- Usage:
>>> TList([1, 2, 3, 4, 5]).group_by(lambda x: x % 2).to_json() '{"0": [2,4],"1": [1,3,5]}'
- key_by(to_key: Callable[[T], str]) TDict[T] [source]¶
- Parameters:
to_key – value -> key
- Usage:
>>> TList(['a1', 'b2', 'c3']).key_by(lambda x: x[0]).to_json() '{"a": "a1","b": "b2","c": "c3"}' >>> TList([1, 2, 3, 4, 5]).key_by(lambda x: x % 2).to_json() '{"0": 4,"1": 5}'
- order_by(func: Callable[[T], Any], reverse: bool = False) TList[T] [source]¶
- Usage:
>>> TList([12, 25, 31, 40, 57]).order_by(lambda x: x % 10) [40, 31, 12, 25, 57] >>> TList([12, 25, 31, 40, 57]).order_by(lambda x: x % 10, reverse=True) [57, 25, 12, 31, 40]
- concat(values: List[T], first: bool = False) TList[T] [source]¶
- Usage:
>>> TList([1, 2]).concat(TList([3, 4])) [1, 2, 3, 4] >>> TList([1, 2]).concat(TList([3, 4]), first=True) [3, 4, 1, 2]
- reduce(func: Callable[[U, T], U], init_value: U) U [source]¶
- Usage:
>>> TList([1, 2, 3, 4, 5]).reduce(lambda t, x: t + 2*x, 100) 130
- sum_by(func: Callable[[T], int | float]) int | float [source]¶
- Usage:
>>> TList([1, 2, 3, 4, 5]).sum_by(lambda x: x*2) 30
- count_by(func: Callable[[T], Any]) TDict[int] [source]¶
- Usage:
>>> TList([1, 11, 25, 35, 21, 4]).count_by(lambda x: x % 10) {1: 3, 5: 2, 4: 1}
- unlines(*, crlf: bool = False) str [source]¶
- Usage:
>>> TList(['aaa', 'bbb', 'ccc']).unlines() 'aaa\nbbb\nccc' >>> TList(['A', 'B', 'C']).unlines(crlf=True) 'A\r\nB\r\nC'
- find(func: Callable[[T], bool]) TOption[T] [source]¶
- Usage:
>>> TList([1, 2, 3, 4, 5]).find(lambda x: x > 3) Option --> 4 >>> TList([1, 2, 3, 4, 5]).find(lambda x: x > 6) Option --> None
- all(func: Callable[[T], bool]) bool [source]¶
- Usage:
>>> TList([1, 2, 3, 4, 5]).all(lambda x: x > 0) True >>> TList([1, 2, 3, 4, 5]).all(lambda x: x > 1) False
- any(func: Callable[[T], bool]) bool [source]¶
- Usage:
>>> TList([1, 2, 3, 4, 5]).any(lambda x: x > 4) True >>> TList([1, 2, 3, 4, 5]).any(lambda x: x > 5) False
- intersection(values: List[T]) TList[T] [source]¶
- Usage:
>>> TList([1, 2, 3, 4, 5]).intersection([2, 4, 6]) [2, 4]
- not_intersection(values: List[T]) TList[T] [source]¶
- Usage:
>>> TList([1, 2, 3, 4, 5]).not_intersection([2, 4, 6]) [1, 3, 5]
- to_csv(fieldnames: Sequence[str], *, with_header: bool = False, crlf: bool = False, tsv: bool = False) str ¶
From sequence of text to csv string
- Parameters:
fieldnames – Order of columns by property name
with_header – Add headers at the first line if True
crlf – Add CRLF line break at the end of line if True, else add LF
tsv – Use tabs as separator if True, else use comma
- Returns:
Csv string
Usage:
>>> from owlmixin.samples import Human >>> humans = Human.from_dicts([ ... {"id": 1, "name": "Tom", "favorites": [{"name": "Apple"}]}, ... {"id": 2, "name": "John", "favorites": [{"name": "Orange"}]} ... ])
>>> print(humans.to_csv(fieldnames=['name', 'id', 'favorites'])) Tom,1,[{'name': 'Apple'}] John,2,[{'name': 'Orange'}]
>>> print(humans.to_csv(fieldnames=['name', 'id', 'favorites'], with_header=True)) name,id,favorites Tom,1,[{'name': 'Apple'}] John,2,[{'name': 'Orange'}]
- to_csvf(fpath: str, fieldnames: Sequence[str], *, encoding: str = 'utf8', with_header: bool = False, crlf: bool = False, tsv: bool = False) str ¶
From instance to yaml file
- Parameters:
fpath – Csv file path
fieldnames – Order of columns by property name
encoding – Csv file encoding
with_header – Add headers at the first line if True
crlf – Add CRLF line break at the end of line if True, else add LF
tsv – Use tabs as separator if True, else use comma
- Returns:
Csv file path
- to_dicts(*, ignore_none: bool = True, force_value: bool = True, ignore_empty: bool = False) List[dict] ¶
From instance to dict
- Parameters:
ignore_none – Properties which is None are excluded if True
force_value – Transform to value using to_value (default: str()) of ValueTransformer which inherited if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
List[Dict]
Usage:
>>> from owlmixin.samples import Human, Food >>> human_dicts = [ ... { ... "id": 1, ... "name": "Tom", ... "favorites": [ ... {"name": "Apple", "names_by_lang": {"en": "Apple"}} ... ] ... }, ... { ... "id": 2, ... "name": "John", ... "favorites": [ ... {"name": "Orange", "names_by_lang": {"en": "Orange"}} ... ] ... } ... ] >>> Human.from_dicts(human_dicts).to_dicts() == human_dicts True
You can include None properties by specifying False for ignore_none
>>> f = Food.from_dicts([{"name": "Apple"}]).to_dicts(ignore_none=False) >>> f[0]["name"] 'Apple' >>> "names_by_lang" in f[0] True >>> f[0]["names_by_lang"]
As default
>>> f = Food.from_dicts([{"name": "Apple"}]).to_dicts() >>> f[0]["name"] 'Apple' >>> "names_by_lang" in f[0] False
You can exclude Empty properties by specifying True for ignore_empty
>>> f = Human.from_dicts([{"id": 1, "name": "Ichiro", "favorites": []}]).to_dicts() >>> f[0]["favorites"] [] >>> f = Human.from_dicts([{"id": 1, "name": "Ichiro", "favorites": []}]).to_dicts(ignore_empty=True) >>> "favorites" in f[0] False
- to_json(*, indent: int = None, ignore_none: bool = True, ignore_empty: bool = False) str ¶
From instance to json string
- Parameters:
indent – Number of indentation
ignore_none – Properties which is None are excluded if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
Json string
Usage:
>>> from owlmixin.samples import Human >>> human = Human.from_dict({ ... "id": 1, ... "name": "Tom", ... "favorites": [ ... {"name": "Apple", "names_by_lang": {"en": "Apple", "de": "Apfel"}}, ... {"name": "Orange"} ... ] ... }) >>> human.to_json() '{"favorites": [{"name": "Apple","names_by_lang": {"de": "Apfel","en": "Apple"}},{"name": "Orange"}],"id": 1,"name": "Tom"}'
- to_jsonf(fpath: str, encoding: str = 'utf8', *, indent: int = None, ignore_none: bool = True, ignore_empty: bool = False) str ¶
From instance to json file
- Parameters:
fpath – Json file path
encoding – Json file encoding
indent – Number of indentation
ignore_none – Properties which is None are excluded if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
Json file path
- to_pretty_json(*, ignore_none: bool = True, ignore_empty: bool = False) str ¶
From instance to pretty json string
- Parameters:
ignore_none – Properties which is None are excluded if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
Json string
Usage:
>>> from owlmixin.samples import Human >>> human = Human.from_dict({ ... "id": 1, ... "name": "Tom", ... "favorites": [ ... {"name": "Apple", "names_by_lang": {"en": "Apple", "de": "Apfel"}}, ... {"name": "Orange"} ... ] ... }) >>> print(human.to_pretty_json()) { "favorites": [ { "name": "Apple", "names_by_lang": { "de": "Apfel", "en": "Apple" } }, { "name": "Orange" } ], "id": 1, "name": "Tom" }
- to_table(fieldnames: Sequence[str]) str ¶
From sequence of text to csv string
- Parameters:
fieldnames – Order of columns by property name
- Returns:
Table string
Usage:
>>> from owlmixin.samples import Human >>> humans = Human.from_dicts([ ... {"id": 1, "name": "Tom", "favorites": [{"name": "Apple"}]}, ... {"id": 2, "name": "John", "favorites": [{"name": "Orange"}]} ... ]) >>> print(humans.to_table(fieldnames=['name', 'id', 'favorites'])) | name | id | favorites | | ---- | --- | -------------------- | | Tom | 1 | [{'name': 'Apple'}] | | John | 2 | [{'name': 'Orange'}] |
- to_yaml(*, ignore_none: bool = True, ignore_empty: bool = False) str ¶
From instance to yaml string
- Parameters:
ignore_none – Properties which is None are excluded if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
Yaml string
Usage:
>>> from owlmixin.samples import Human >>> human = Human.from_dict({ ... "id": 1, ... "name": "Tom", ... "favorites": [ ... {"name": "Apple", "names_by_lang": {"en": "Apple", "de": "Apfel"}}, ... {"name": "Orange"} ... ] ... }) >>> print(human.to_yaml()) favorites: - name: Apple names_by_lang: de: Apfel en: Apple - name: Orange id: 1 name: Tom
- to_yamlf(fpath: str, encoding: str = 'utf8', *, ignore_none: bool = True, ignore_empty: bool = False) str ¶
From instance to yaml file
- Parameters:
fpath – Yaml file path
encoding – Yaml file encoding
ignore_none – Properties which is None are excluded if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
Yaml file path
TIterator¶
- class owlmixin.owlcollections.TIterator(iterable: Iterable)[source]¶
-
- next_at(index: int) TOption[T] [source]¶
Usage:
>>> it = TIterator([1, 2, 3, 4, 5]) >>> it.next_at(1) Option --> 2 >>> it.next_at(1) Option --> 4 >>> it.next_at(1) Option --> None
- for_each(func: Callable[[T], None]) None [source]¶
Usage:
>>> TIterator([1, 2, 3]).for_each(lambda x: print(str(x))) 1 2 3
- map(func: Callable[[T], U]) TIterator[U] [source]¶
Usage:
>>> it = TIterator([1, 2, 3, 4, 5]).map(lambda x: x+1) >>> it.to_list() [2, 3, 4, 5, 6] >>> it.to_list() []
- emap(func: Callable[[T, int], U]) TIterator[U] [source]¶
Usage:
>>> it = TIterator([10, 20, 30, 40, 50]).emap(lambda x, i: (x+1, i)) >>> it.to_list() [(11, 0), (21, 1), (31, 2), (41, 3), (51, 4)] >>> it.to_list() []
- filter(func: Callable[[T], bool]) TIterator[T] [source]¶
Usage:
>>> it = TIterator([1, 2, 3, 4, 5]).filter(lambda x: x > 3) >>> it.to_list() [4, 5] >>> it.to_list() []
- reject(func: Callable[[T], bool]) TIterator[T] [source]¶
Usage:
>>> it = TIterator([1, 2, 3, 4, 5]).reject(lambda x: x > 3) >>> it.to_list() [1, 2, 3] >>> it.to_list() []
- flatten() TIterator[U] [source]¶
Usage:
>>> it = TIterator([[1, 2], [3, 4]]).flatten() >>> it.to_list() [1, 2, 3, 4] >>> it.to_list() []
- flat_map(func: Callable[[T], List[U]]) TIterator[U] [source]¶
Usage:
>>> it = TIterator([1, 2, 3]).flat_map(lambda x: [x, x+1]) >>> it.to_list() [1, 2, 2, 3, 3, 4] >>> it.to_list() []
- head() TOption[T] [source]¶
Usage:
>>> it = TIterator([1, 2, 3, 4, 5]) >>> it.head().get() 1 >>> it.head().get() 2
- take(size_: int) TIterator[T] [source]¶
Usage:
>>> it = TIterator([1, 2, 3, 4, 5]).take(3) >>> it.to_list() [1, 2, 3] >>> it.to_list() []
- take_while(func: Callable[[T], bool]) TIterator[T] [source]¶
Usage:
>>> it = TIterator([1, 2, 30, 4, 50]).take_while(lambda x: x < 10) >>> it.to_list() [1, 2] >>> it.to_list() []
- tail(size_: int) TIterator[T] [source]¶
Usage:
>>> it = TIterator([1, 2, 3, 4, 5]).tail(3) >>> it.to_list() [3, 4, 5] >>> it.to_list() []
- uniq() TIterator[T] [source]¶
Usage:
>>> it = TIterator([1, 2, 3, 2, 1]).uniq() >>> it.to_list() [1, 2, 3] >>> it.to_list() []
- uniq_by(func: Callable[[T], Any] = None) TIterator[T] [source]¶
Usage:
>>> it = TIterator([1, 2, 3, -2, -1]).uniq_by(lambda x: x**2) >>> it.to_list() [1, 2, 3] >>> it.to_list() []
- partition(func: Callable[[T], bool]) Tuple[TIterator[T], TIterator[T]] [source]¶
Usage:
>>> ng, ok = TIterator([1, 2, 3, 4, 5]).partition(lambda x: x > 3) >>> ng.to_list() [1, 2, 3] >>> ng.to_list() [] >>> ok.to_list() [4, 5] >>> ok.to_list() []
- group_by(to_key: Callable[[T], str]) TDict[TList[T]] [source]¶
Usage:
>>> TIterator([1, 2, 3, 4, 5]).group_by(lambda x: x % 2).to_json() '{"0": [2,4],"1": [1,3,5]}'
- key_by(to_key: Callable[[T], str]) TDict[T] [source]¶
- Parameters:
to_key – value -> key
Usage:
>>> TIterator(['a1', 'b2', 'c3']).key_by(lambda x: x[0]).to_json() '{"a": "a1","b": "b2","c": "c3"}' >>> TIterator([1, 2, 3, 4, 5]).key_by(lambda x: x % 2).to_json() '{"0": 4,"1": 5}'
- order_by(func: Callable[[T], Any], reverse: bool = False) TIterator[T] [source]¶
Usage:
>>> it = TIterator([12, 25, 31, 40, 57]).order_by(lambda x: x % 10) >>> it.to_list() [40, 31, 12, 25, 57] >>> it.to_list() []
>>> it = TIterator([12, 25, 31, 40, 57]).order_by(lambda x: x % 10, reverse=True) >>> it.to_list() [57, 25, 12, 31, 40] >>> it.to_list() []
- concat(values: Iterable[T], first: bool = False) TIterator[T] [source]¶
Usage:
>>> it = TIterator([1, 2]).concat(TIterator([3, 4])) >>> it.to_list() [1, 2, 3, 4] >>> it.to_list() []
>>> it = TIterator([1, 2]).concat([3, 4], first=True) >>> it.to_list() [3, 4, 1, 2] >>> it.to_list() []
- reduce(func: Callable[[U, T], U], init_value: U) U [source]¶
Usage:
>>> TIterator([1, 2, 3, 4, 5]).reduce(lambda t, x: t + 2*x, 100) 130
- sum_by(func: Callable[[T], int | float]) int | float [source]¶
Usage:
>>> TIterator([1, 2, 3, 4, 5]).sum_by(lambda x: x*2) 30
- count_by(func: Callable[[T], Any]) TDict[int] [source]¶
- Usage:
>>> it = TIterator([1, 11, 25, 35, 21, 4]) >>> it.count_by(lambda x: x % 10) {1: 3, 5: 2, 4: 1} >>> it.to_list() []
- unlines(*, crlf: bool = False) str [source]¶
- Usage:
>>> TIterator(['aaa', 'bbb', 'ccc']).unlines() 'aaa\nbbb\nccc' >>> TIterator(['A', 'B', 'C']).unlines(crlf=True) 'A\r\nB\r\nC'
- find(func: Callable[[T], bool]) TOption[T] [source]¶
Usage:
>>> TIterator([1, 2, 3, 4, 5]).find(lambda x: x > 3) Option --> 4 >>> TIterator([1, 2, 3, 4, 5]).find(lambda x: x > 6) Option --> None
- all(func: Callable[[T], bool]) bool [source]¶
Usage:
>>> TIterator([1, 2, 3, 4, 5]).all(lambda x: x > 0) True >>> TIterator([1, 2, 3, 4, 5]).all(lambda x: x > 1) False
- any(func: Callable[[T], bool]) bool [source]¶
Usage:
>>> TIterator([1, 2, 3, 4, 5]).any(lambda x: x > 4) True >>> TIterator([1, 2, 3, 4, 5]).any(lambda x: x > 5) False
- intersection(values: Iterable[T]) TIterator[T] [source]¶
Usage:
>>> it = TIterator([1, 2, 3, 4, 5]).intersection([2, 4, 6]) >>> it.to_list() [2, 4] >>> it.to_list() []
- not_intersection(values: Iterable[T]) TIterator[T] [source]¶
Usage:
>>> it = TIterator([1, 2, 3, 4, 5]).not_intersection([2, 4, 6]) >>> it.to_list() [1, 3, 5] >>> it.to_list() []
- to_csv(fieldnames: Sequence[str], *, with_header: bool = False, crlf: bool = False, tsv: bool = False) str ¶
From sequence of text to csv string
- Parameters:
fieldnames – Order of columns by property name
with_header – Add headers at the first line if True
crlf – Add CRLF line break at the end of line if True, else add LF
tsv – Use tabs as separator if True, else use comma
- Returns:
Csv string
Usage:
>>> from owlmixin.samples import Human >>> humans = Human.from_dicts([ ... {"id": 1, "name": "Tom", "favorites": [{"name": "Apple"}]}, ... {"id": 2, "name": "John", "favorites": [{"name": "Orange"}]} ... ])
>>> print(humans.to_csv(fieldnames=['name', 'id', 'favorites'])) Tom,1,[{'name': 'Apple'}] John,2,[{'name': 'Orange'}]
>>> print(humans.to_csv(fieldnames=['name', 'id', 'favorites'], with_header=True)) name,id,favorites Tom,1,[{'name': 'Apple'}] John,2,[{'name': 'Orange'}]
- to_csvf(fpath: str, fieldnames: Sequence[str], *, encoding: str = 'utf8', with_header: bool = False, crlf: bool = False, tsv: bool = False) str ¶
From instance to yaml file
- Parameters:
fpath – Csv file path
fieldnames – Order of columns by property name
encoding – Csv file encoding
with_header – Add headers at the first line if True
crlf – Add CRLF line break at the end of line if True, else add LF
tsv – Use tabs as separator if True, else use comma
- Returns:
Csv file path
- to_dicts(*, ignore_none: bool = True, force_value: bool = True, ignore_empty: bool = False) List[dict] ¶
From instance to dict
- Parameters:
ignore_none – Properties which is None are excluded if True
force_value – Transform to value using to_value (default: str()) of ValueTransformer which inherited if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
List[Dict]
Usage:
>>> from owlmixin.samples import Human, Food >>> human_dicts = [ ... { ... "id": 1, ... "name": "Tom", ... "favorites": [ ... {"name": "Apple", "names_by_lang": {"en": "Apple"}} ... ] ... }, ... { ... "id": 2, ... "name": "John", ... "favorites": [ ... {"name": "Orange", "names_by_lang": {"en": "Orange"}} ... ] ... } ... ] >>> Human.from_dicts(human_dicts).to_dicts() == human_dicts True
You can include None properties by specifying False for ignore_none
>>> f = Food.from_dicts([{"name": "Apple"}]).to_dicts(ignore_none=False) >>> f[0]["name"] 'Apple' >>> "names_by_lang" in f[0] True >>> f[0]["names_by_lang"]
As default
>>> f = Food.from_dicts([{"name": "Apple"}]).to_dicts() >>> f[0]["name"] 'Apple' >>> "names_by_lang" in f[0] False
You can exclude Empty properties by specifying True for ignore_empty
>>> f = Human.from_dicts([{"id": 1, "name": "Ichiro", "favorites": []}]).to_dicts() >>> f[0]["favorites"] [] >>> f = Human.from_dicts([{"id": 1, "name": "Ichiro", "favorites": []}]).to_dicts(ignore_empty=True) >>> "favorites" in f[0] False
- to_json(*, indent: int = None, ignore_none: bool = True, ignore_empty: bool = False) str ¶
From instance to json string
- Parameters:
indent – Number of indentation
ignore_none – Properties which is None are excluded if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
Json string
Usage:
>>> from owlmixin.samples import Human >>> human = Human.from_dict({ ... "id": 1, ... "name": "Tom", ... "favorites": [ ... {"name": "Apple", "names_by_lang": {"en": "Apple", "de": "Apfel"}}, ... {"name": "Orange"} ... ] ... }) >>> human.to_json() '{"favorites": [{"name": "Apple","names_by_lang": {"de": "Apfel","en": "Apple"}},{"name": "Orange"}],"id": 1,"name": "Tom"}'
- to_jsonf(fpath: str, encoding: str = 'utf8', *, indent: int = None, ignore_none: bool = True, ignore_empty: bool = False) str ¶
From instance to json file
- Parameters:
fpath – Json file path
encoding – Json file encoding
indent – Number of indentation
ignore_none – Properties which is None are excluded if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
Json file path
- to_pretty_json(*, ignore_none: bool = True, ignore_empty: bool = False) str ¶
From instance to pretty json string
- Parameters:
ignore_none – Properties which is None are excluded if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
Json string
Usage:
>>> from owlmixin.samples import Human >>> human = Human.from_dict({ ... "id": 1, ... "name": "Tom", ... "favorites": [ ... {"name": "Apple", "names_by_lang": {"en": "Apple", "de": "Apfel"}}, ... {"name": "Orange"} ... ] ... }) >>> print(human.to_pretty_json()) { "favorites": [ { "name": "Apple", "names_by_lang": { "de": "Apfel", "en": "Apple" } }, { "name": "Orange" } ], "id": 1, "name": "Tom" }
- to_table(fieldnames: Sequence[str]) str ¶
From sequence of text to csv string
- Parameters:
fieldnames – Order of columns by property name
- Returns:
Table string
Usage:
>>> from owlmixin.samples import Human >>> humans = Human.from_dicts([ ... {"id": 1, "name": "Tom", "favorites": [{"name": "Apple"}]}, ... {"id": 2, "name": "John", "favorites": [{"name": "Orange"}]} ... ]) >>> print(humans.to_table(fieldnames=['name', 'id', 'favorites'])) | name | id | favorites | | ---- | --- | -------------------- | | Tom | 1 | [{'name': 'Apple'}] | | John | 2 | [{'name': 'Orange'}] |
- to_yaml(*, ignore_none: bool = True, ignore_empty: bool = False) str ¶
From instance to yaml string
- Parameters:
ignore_none – Properties which is None are excluded if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
Yaml string
Usage:
>>> from owlmixin.samples import Human >>> human = Human.from_dict({ ... "id": 1, ... "name": "Tom", ... "favorites": [ ... {"name": "Apple", "names_by_lang": {"en": "Apple", "de": "Apfel"}}, ... {"name": "Orange"} ... ] ... }) >>> print(human.to_yaml()) favorites: - name: Apple names_by_lang: de: Apfel en: Apple - name: Orange id: 1 name: Tom
- to_yamlf(fpath: str, encoding: str = 'utf8', *, ignore_none: bool = True, ignore_empty: bool = False) str ¶
From instance to yaml file
- Parameters:
fpath – Yaml file path
encoding – Yaml file encoding
ignore_none – Properties which is None are excluded if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
Yaml file path
TDict¶
- class owlmixin.owlcollections.TDict[source]¶
- map(func: Callable[[K, T], U]) TIterator[U] [source]¶
Usage:
>>> it = TDict(k1=1, k2=2, k3=3).map(lambda k, v: v*2) >>> sorted(it.to_list()) [2, 4, 6] >>> it.to_list() []
- map_values(func: Callable[[T], U]) TDict[U] [source]¶
Usage:
>>> TDict(k1=1, k2=2, k3=3).map_values(lambda x: x*2) == { ... "k1": 2, ... "k2": 4, ... "k3": 6 ... } True
- map_values2(func: Callable[[K, T], U]) TDict[U] [source]¶
Usage:
>>> TDict(k1=1, k2=2, k3=3).map_values2(lambda k, v: f'{k} -> {v*2}') == { ... "k1": "k1 -> 2", ... "k2": "k2 -> 4", ... "k3": "k3 -> 6" ... } True
- filter(func: Callable[[K, T], bool]) TIterator[T] [source]¶
Usage:
>>> it = TDict(k1=1, k2=2, k3=3).filter(lambda k, v: v < 2) >>> it.to_list() [1] >>> it.to_list() []
- reject(func: Callable[[K, T], bool]) TIterator[T] [source]¶
Usage:
>>> it = TDict(k1=1, k2=2, k3=3).reject(lambda k, v: v < 3) >>> it.to_list() [3] >>> it.to_list() []
- sum_by(func: Callable[[K, T], int | float]) int | float [source]¶
Usage:
>>> TDict(k1=1, k2=2, k3=3).sum_by(lambda k, v: v*2) 12
- find(func: Callable[[K, T], bool]) TOption[T] [source]¶
Usage:
>>> TDict(k1=1, k2=2, k3=3).find(lambda k, v: v == 2) Option --> 2 >>> TDict(k1=1, k2=2, k3=3).find(lambda k, v: v == 4) Option --> None
- to_list() TList[T] [source]¶
Usage:
>>> TDict(k1=1, k2=2, k3=3).to_list().order_by(lambda x: x) [1, 2, 3]
- to_iterator() TIterator[T] [source]¶
Usage:
>>> it = TDict(k1=1, k2=2, k3=3).to_iterator().order_by(lambda x: x) >>> it.to_list() [1, 2, 3] >>> it.to_list() []
- all(func: Callable[[K, T], bool]) bool [source]¶
Usage:
>>> TDict(k1=1, k2=2, k3=3).all(lambda k, v: v > 0) True >>> TDict(k1=1, k2=2, k3=3).all(lambda k, v: v > 1) False
- any(func: Callable[[K, T], bool]) bool [source]¶
Usage:
>>> TDict(k1=1, k2=2, k3=3).any(lambda k, v: v > 2) True >>> TDict(k1=1, k2=2, k3=3).any(lambda k, v: v > 3) False
- assign(dict_: Dict[str, T]) TDict[T] [source]¶
Usage:
>>> TDict(k1=1, k2=2).assign({'k3': 3}) {'k1': 1, 'k2': 2, 'k3': 3} >>> TDict(k1=1, k2=2).assign(TDict({'k2': 3})) {'k1': 1, 'k2': 3}
- pick_by(func: Callable[[K, T], bool]) TDict[T] [source]¶
Usage:
>>> TDict(k1=1, k2=2, k3=3).pick_by(lambda k, v: v > 2) {'k3': 3}
- omit_by(func: Callable[[K, T], bool]) TDict[T] [source]¶
Usage:
>>> TDict(k1=1, k2=2, k3=3).omit_by(lambda k, v: v > 2) {'k1': 1, 'k2': 2}
- str_format(format_: str) str ¶
From instance to str with formatting
- Parameters:
format – format string
- Returns:
str
Usage:
>>> from owlmixin.samples import Human, Food >>> human_dict = { ... "id": 1, ... "name": "Tom", ... "favorites": [ ... {"name": "Apple", "names_by_lang": {"en": "Apple"}} ... ] ... } >>> Human.from_dict(human_dict).str_format('{id}: {name}') '1: Tom'
- to_dict(*, ignore_none: bool = True, force_value: bool = True, ignore_empty: bool = False) dict ¶
From instance to dict
- Parameters:
ignore_none – Properties which is None are excluded if True
force_value – Transform to value using to_value (default: str()) of ValueTransformer which inherited if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
Dict
- Usage:
>>> from owlmixin.samples import Human, Food >>> human_dict = { ... "id": 1, ... "name": "Tom", ... "favorites": [ ... {"name": "Apple", "names_by_lang": {"en": "Apple"}} ... ] ... } >>> Human.from_dict(human_dict).to_dict() == human_dict True
You can include None properties by specifying False for ignore_none
>>> f = Food.from_dict({"name": "Apple"}).to_dict(ignore_none=False) >>> f["name"] 'Apple' >>> "names_by_lang" in f True >>> f["names_by_lang"]
As default
>>> f = Food.from_dict({"name": "Apple"}).to_dict() >>> f["name"] 'Apple' >>> "names_by_lang" in f False
You can exclude Empty properties by specifying True for ignore_empty
>>> f = Human.from_dict({"id": 1, "name": "Ichiro", "favorites": []}).to_dict() >>> f["favorites"] [] >>> f = Human.from_dict({"id": 1, "name": "Ichiro", "favorites": []}).to_dict(ignore_empty=True) >>> "favorites" in f False
- to_json(*, indent: int = None, ignore_none: bool = True, ignore_empty: bool = False) str ¶
From instance to json string
- Parameters:
indent – Number of indentation
ignore_none – Properties which is None are excluded if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
Json string
Usage:
>>> from owlmixin.samples import Human >>> human = Human.from_dict({ ... "id": 1, ... "name": "Tom", ... "favorites": [ ... {"name": "Apple", "names_by_lang": {"en": "Apple", "de": "Apfel"}}, ... {"name": "Orange"} ... ] ... }) >>> human.to_json() '{"favorites": [{"name": "Apple","names_by_lang": {"de": "Apfel","en": "Apple"}},{"name": "Orange"}],"id": 1,"name": "Tom"}'
- to_jsonf(fpath: str, encoding: str = 'utf8', *, indent: int = None, ignore_none: bool = True, ignore_empty: bool = False) str ¶
From instance to json file
- Parameters:
fpath – Json file path
encoding – Json file encoding
indent – Number of indentation
ignore_none – Properties which is None are excluded if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
Json file path
- to_pretty_json(*, ignore_none: bool = True, ignore_empty: bool = False) str ¶
From instance to pretty json string
- Parameters:
ignore_none – Properties which is None are excluded if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
Json string
Usage:
>>> from owlmixin.samples import Human >>> human = Human.from_dict({ ... "id": 1, ... "name": "Tom", ... "favorites": [ ... {"name": "Apple", "names_by_lang": {"en": "Apple", "de": "Apfel"}}, ... {"name": "Orange"} ... ] ... }) >>> print(human.to_pretty_json()) { "favorites": [ { "name": "Apple", "names_by_lang": { "de": "Apfel", "en": "Apple" } }, { "name": "Orange" } ], "id": 1, "name": "Tom" }
- to_yaml(*, ignore_none: bool = True, ignore_empty: bool = False) str ¶
From instance to yaml string
- Parameters:
ignore_none – Properties which is None are excluded if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
Yaml string
Usage:
>>> from owlmixin.samples import Human >>> human = Human.from_dict({ ... "id": 1, ... "name": "Tom", ... "favorites": [ ... {"name": "Apple", "names_by_lang": {"en": "Apple", "de": "Apfel"}}, ... {"name": "Orange"} ... ] ... }) >>> print(human.to_yaml()) favorites: - name: Apple names_by_lang: de: Apfel en: Apple - name: Orange id: 1 name: Tom
- to_yamlf(fpath: str, encoding: str = 'utf8', *, ignore_none: bool = True, ignore_empty: bool = False) str ¶
From instance to yaml file
- Parameters:
fpath – Yaml file path
encoding – Yaml file encoding
ignore_none – Properties which is None are excluded if True
ignore_empty – Properties which is empty are excluded if True
- Returns:
Yaml file path